Loading [MathJax]/jax/output/HTML-CSS/config.js
6.4 Exercises::::수학과 사는 이야기

6.4 Exercises

수학이야기/미적분 2016. 4. 27. 16:57
반응형

31. An alternative derivation of the surface area formula

Assume $f$ is smooth on $[a,b]$ in the usual way. In the $k$th subinterval $[x_{k-1},x_{k}]$, construct the tangent line to the curve at the midpoint $m_k=(x_{k-1}+x_{k})/2$, as in the accompanying figure.

 

r1+r2=2f(mk)

If line $l$ is the tangent Line at point $(m_k, f(m_k))$, then

l:yf(mk)=f(mk)(xmk)

$(x_{k-1},r_1 ), (x_k, r_2)$ are put on $l$

r1f(mk)=f(mk)(xk1mk)(1)

r2f(mk)=f(mk)(xkmk)(2)

$(1)-(2)$

r1r2=f(mk)(xk1xk)=f(mk)Δxk

r1=f(mk)f(mk)Δxk2,r2=f(mk)+f(mk)Δxk2

The lateral surface area of the cone swept out by the tangent line segment as it revolves about the x-axis is

Sk=2πf(mk)(Δxk)2+(Δyk)2=2πf(mk)1+(f(mk))2Δxk

Sk=1nSk=k=1n2πf(mk)1+(f(mk))2Δxk

S=limnk=1n2πf(mk)1+(f(mk))2Δxk=ab2πf(x)1+(f(x))2dx

반응형

수학이야기님의
글이 좋았다면 응원을 보내주세요!