Exercises 120p
수학이야기/미적분 2016. 3. 15. 12:2017. Let $$ f(x) = \begin{cases} x & \quad \text{if } x \text{ is rational}\\ 0 & \quad \text{if } x \text{ is irrational}\\ \end{cases} $$
a. Show that $f$ is countinuous at $x=0$.
Let $\forall \varepsilon,\quad\delta=\varepsilon$
If $x\in \mathbb{Q}$, then $\forall x, \;\; 0<|x-0|<\delta \Rightarrow |f(x)-0|=|x|<\varepsilon$
If $x\in \mathbb{R-Q}$, then $\forall x, \;\; 0<|x-0|<\delta \Rightarrow |f(x)-0|=|0-0|<\varepsilon$
$\blacksquare$
b. Show that $f$ is discountinuous at every nonzero value $x$.
1) Suppose $c\in\mathbb{Q}$ and $\displaystyle{|c|>\varepsilon>\frac{|c|}{2}}$
Every open interval $c \in I$ cotains irrational value $x$ such that $|f(x)-c|=|0-c|=|c|>\varepsilon$
2) Suppose $c\in\mathbb{R-Q}$ and $\displaystyle{\varepsilon<\frac{|c|}{2}}$
Let $\displaystyle{0<|x-c|<\frac{|c|}{2}}$ and $x\in\mathbb{Q}$, then $$\frac{|c|}{2}<|x|<\frac{3|c|}{2}$$
$\therefore\;\;|f(x)-0|=|x|>\varepsilon$
By 1) 2) $f$ is discontinuous at every nonzero value $x$.
$\blacksquare$
18은 시간이 없어서 손글씨로 올린다.