Processing math: 100%
6.4 Exercises::::수학과 사는 이야기

6.4 Exercises

수학이야기/미적분 2016. 4. 27. 16:57
반응형

31. An alternative derivation of the surface area formula

Assume f is smooth on [a,b] in the usual way. In the kth subinterval [xk1,xk], construct the tangent line to the curve at the midpoint mk=(xk1+xk)/2, as in the accompanying figure.

 

r1+r2=2f(mk)

If line l is the tangent Line at point (mk,f(mk)), then

l:yf(mk)=f(mk)(xmk)

(xk1,r1),(xk,r2) are put on l

r1f(mk)=f(mk)(xk1mk)(1)

r2f(mk)=f(mk)(xkmk)(2)

(1)(2)

r1r2=f(mk)(xk1xk)=f(mk)Δxk

r1=f(mk)f(mk)Δxk2,r2=f(mk)+f(mk)Δxk2

The lateral surface area of the cone swept out by the tangent line segment as it revolves about the x-axis is

Sk=2πf(mk)(Δxk)2+(Δyk)2=2πf(mk)1+(f(mk))2Δxk

Snk=1Sk=nk=12πf(mk)1+(f(mk))2Δxk

S=limnnk=12πf(mk)1+(f(mk))2Δxk=ba2πf(x)1+(f(x))2dx

반응형

수학이야기님의
글이 좋았다면 응원을 보내주세요!