하이포사이클로이드(hypocycloid)
수학이야기/기하벡터
2014. 6. 25. 14:00
하이포사이클로이드는 사이클로이드에서 한발 더 나간 곡선이다. 두 원이 있을 때 작은 원이 큰 원에 내접하면서 구른다고 하자. 이때 작은 원 위에 있는 한 정점이 그리는 자취가 하이포사이클로이드(hypocycloid)이다. 자취를 식으로 나타내 보자. 두 원의 반지름이 각각 $R,r(R>r)$이라고 하자. 작은 원이 큰 원에 접하면서 $\alpha$ 회전했을 때, 작은 원 중심은 큰 원의 중심을 중심으로 $\theta$ 회전했다고 하자. 원 위의 점은 $P(x(\theta),y(\theta))$라고 하고 시작은 $x(0)=R, y(0)=0$이라고 하자. $$r\alpha=R\theta$$ 이제 작은 원 중심 $A$를 지나고 $x$축과 평행한 직선과 $\overline{AP}$가 이루는 각을 $\phi$라고..